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Automated Segmentation of the Right Ventricle
in 3D Echocardiography: A Kalman Filter

State Estimation Approach
Jørn Bersvendsen*, Fredrik Orderud, Richard John Massey, Kristian Fosså, Olivier Gerard,

Stig Urheim, and Eigil Samset

Abstract—As the right ventricle's (RV) role in cardiovascular
diseases is being more widely recognized, interest in RV imaging,
function and quantification is growing. However, there are cur-
rently few RV quantification methods for 3D echocardiography
presented in the literature or commercially available. In this
paper we propose an automated RV segmentation method for 3D
echocardiographic images. We represent the RV geometry by a
Doo-Sabin subdivision surface with deformation modes derived
from a training set of manual segmentations. The segmentation
is then represented as a state estimation problem and solved with
an extended Kalman filter by combining the RV geometry with
a motion model and edge detection. Validation was performed
by comparing surface-surface distances, volumes and ejection
fractions in 17 patients with aortic insufficiency between the pro-
posed method, magnetic resonance imaging (MRI), and a manual
echocardiographic reference. The algorithm was efficient with
a mean computation time of 2.0 s. The mean absolute distances
between the proposed and manual segmentations were 3.6
0.7 mm. Good agreements of end diastolic volume, end systolic
volume and ejection fraction with respect to MRI ( ,

and 0 10%, respectively) and a manual echocar-
diographic reference (7 30 mL, 13 17 mL and ,
respectively) were observed.

Index Terms—Image segmentation, statistical shape models, 3D
echocardiography.

I. INTRODUCTION

C OMPARED to the Left Ventricle (LV), image processing
methods of the Right Ventricle (RV) are infrequently re-

ported in the literature. However, as the RV's role in cardiovas-
cular diseases is being more widely recognized, interest in RV
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function and imaging is growing. For instance, accurate assess-
ment of the RV has been shown to be important in patients with
pulmonary hypertension or LV dysfunction [1], [2].
In current clinical practice, manual measurements in Mag-

netic Resonance Imaging (MRI) are considered the gold stan-
dard for quantitative assessment of RV volumes and ejection
fraction [1]. However, MRI is seldom routinely available, and
in some cases contraindicated. Furthermore, since manual as-
sessment is time consuming and subject to inter-observer vari-
ability, automated methods are preferred. In the last decade,
Three-Dimensional Transthoracic Echocardiography (3DTTE)
has emerged as an alternative for assessing the RV.
Automated segmentation of the RV is largely an unsolved

problem, and sparsely reported in the literature for both 3DTTE
and MRI. For MRI, the problem is typically solved with a
bi-ventricular segmentation method [3]. Methods using a strong
prior, such as deformable models [4], active shape models [5]
or atlases [6]–[9], and image based methods with and without
anatomical priors [10]–[13] have been proposed.
For 3DTTE, Angelini et al. [14] have presented a level-set

framework for segmentation of both LV and RV. The LV and
RV surfaces are implicitly represented as the zero-intersection
of a higher order function, which is fitted to the image by en-
ergy minimization. Stebbing et al. [15] has described a seg-
mentation method using an explicit Loop subdivision surface
model of the RV and solving the fitting problem with energy
minimization. Missing edges and information of RV shape in
the target population is implicitly handled by solving the en-
ergy minimization simultaneously in either multiple views of
the same patient, or across multiple patients. Commercially, the
only widely available tool for RV segmentation in 3DTTE is the
TomTec 4D RV-Function software (TomTec Imaging Systems,
Munich, Germany). Although the tool has been extensively val-
idated in the literature [16]–[21], the details of the underlying
method have not been published.
Segmentation of the LV in 3DTTE has received much more

attention in the literature, and methods based on deformable
models [22], [23], active shape models [24], active appearence
models [25], level-set methods [14], and classification [26] have
been presented. However, these methods are not immediately
applicable to the RV, as there are several challenges that are es-
pecially demanding in this case, such as an increased anatomical
complexity and larger inter-patient variation. For echocardiog-
raphy in particular, challenges such as weaker myocardial bor-
ders, thin walls, pronounced trabeculations and reduced image
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quality make the problem even harder. Furthermore, 3DTTE ac-
quisition of the whole RV is generally challenging. For instance,
the anterior part of the RV outflow tract (RVOT) and anterio-lat-
eral RV free wall is typically shadowed by the sternum or lung
tissue [21].
In this paper we present a computationally efficient RV seg-

mentation algorithm for 3DTTE images. The algorithm is based
on a real-time segmentation framework previously applied to
the LV [22]. We represent the RV anatomy using a compact
geometric model with modes of variation derived from manual
segmentations in MRI sequences. The segmentation problem is
then solved by state estimation using a Kalman filter to com-
bine the geometric model with edge detections and a motion
model. Evaluation of the method was performed by comparing
volumes and ejection fractions in 17 clinical cases to MRI and a
state-of-the-art commercial 3DTTE RV assessment tool, as well
as surface-surface distance metrics with respect to manual seg-
mentations in 3DTTE.

II. METHODS

The method presented here is an application of a previously
published real-time volumetric segmentation framework that
has been applied to the left ventricle [22], [27] and aortic root
[28]. In this framework, a compact geometric representation
of the target anatomy is fitted to the image by fusing informa-
tion from the shape prior, edge detection, and motion prediction
using an extended Kalman filter. The underlying RV geometry
is represented by a subdivision surface and extended with a Sta-
tistical ShapeModel (SSM) derived frommanual segmentations
in cine MRI images.

A. Model
1) SurfaceModel: We represent the underlying RV geometry

with a Doo-Sabin subdivision surface. This type of surface is
a generalization of a uniform quadratic B-spline for arbitrary
topology, defined by a control polyhedron which is interpolated
to create a smooth surface.
Orderud et al. [27] have described a computationally efficient

method of calculating the basis functions at arbitrary surface
locations. For a location on the surface defined by a con-
trol polyhedron with vertices , the trans-
formed point is given by

(1)

where is a vector of basis functions. This surface deformation
is denoted . Note that the basis functions are uniquely de-
fined by the topology of the control polyhedron, which means
they can be precomputed for a given surface distribution. This
is important for computational efficiency [27]. The RV subdi-
vision surface is defined by a control polyhedron consisting of
32 vertices; 12 on the lateral free wall, 9 at the septum, 5 at the
Tricuspid Valve (TV) annulus, 5 at the Pulmonary Valve (PV)
annulus and 1 at the apex. Fig. 1 shows the control polyhedron
and the resulting surface.
2) Hinge Transform: One of the anatomical variations of

the RV is the orientation of the Right Ventricle Outflow Tract
(RVOT) with respect to the RV long axis. In order to capture

Fig. 1. Control polyhedron and resulting Doo-Sabin surface representation of
the right ventricle.

Fig. 2. Mean model with changing hinge transform parameter. From left to
right: , 0 and 15 rotations. The black line illustrates the normal direction
of the pulmonary valve, for reference.

this variability in a natural way, we introduce a hinge transform
for the pulmonary valve control vertices. This transform is a
rotation about the apex-PV-TV plane normal direction and a
displacement in the RVOT long axis, as demonstrated in Fig. 2.
The hinge transform is applied by trans-

forming the control vertices ,

if
otherwise, (2)

where are the rotation and displacement param-
eters and is the set of control vertices for which the hinge
applies.
3) Statistical Shape Model: Statistical Shape Models (SSM)

have been established as a robust tool for modeling cardiac
structures [29]. By building a statistical model from manual
segmentations, one can introduce strong prior shape informa-
tion while simultaneously handling shape variation in a natural
way. SSMs are normally constructed by performing Principal
Component Analysis (PCA) on a training matrix whose rows
are coordinates for all landmarks in manually segmented point
distribution models. This results in a set of modes of variation

such that any valid shape can be approximated by

(3)

where is the mean model and are the shape parameters.
We derived the mean model and statistical modes of varia-

tion from manual segmentations of short axis cine-MRI record-
ings from an open access database [30]. 14 patients with high
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quality RV images were selected from the database, constituting
5 patients with myocardial infarction, 4 with non-infarct heart
failure, 3 with hypertrophy and 2 healthy subjects. Stack mis-
alignment was corrected by fitting the LV center points to a
second order polynomial [31]. All recordings consisted of 20
phases resulting in a total of 280 images.
For each reference MRI image, the RV endocardial borders

were manually traced in all slices, and the pulmonary valve
center, tricuspid valve center and RV apex landmarks were iden-
tified, resulting in a set of manual trace points . The
Doo-Sabin surface was fitted to each trace set by minimizing
the sum of Euclidean distances between and corresponding
surface points,

(4)

where is the projection onto the surface of
the trace point . The optimization was solved using gradient
descent,

(5)

where

(6)

is a vector of optimization variables, and is the associated
Jacobian matrix

(7)

The hinge was removed by applying on the control ver-
tices of each training surface, before rigidly registering to a
randomly selected surface, allowing for anisotropic scaling. In
order to perform PCA on surface points as opposed to control
vertices, the surface points corresponding to the control ver-
tices were calculated by where is a matrix of
Doo-Sabin basis functions at the centroid of each surface patch.
After performing PCA on the surface locations, each mode
was projected back into the control vertex space by

. To reduce the parameter space, the first modes con-
stituting at least 95% of the total variation were kept. The local
control vertices of every valid shape can then be approxi-
mated by a linear combination of the modes of variation,

(8)

where is the shape parameters and is the mean model. This
transform is denoted .
4) Global Transform: In order to align the model in the

image space, we introduce a global transform allowing trans-
lation, anisotropic scaling, and rotation. The global transform
is denoted where is the 9-degrees-of-freedom trans-
form state vector.
5) Motion Model: In order to capture the movement of the

Atrio-Ventricular (AV) plane during the cardiac cycle, we intro-
duce a motion model. The hinge and global transforms can be

defined by three landmarks; valve center, tricuspid valve center,
and the RV apex position. We model the trajectory of each
of these landmarks as a simple linear motion

(9)

where and are the landmark positions in the End Di-
astolic (ED) and End Systolic (ES) frames.
For each of the 14 MRI images used for statistical analysis,

the landmarks were manually traced during the cardiac
cycle and the coefficient was calculated by

(10)

Each was then calculated as the mean of all training trajecto-
ries.
6) Complete Model: The combined transform between a

local point on the surface to the global space is

(11)

B. Segmentation
The method presented here is an application of a previously

presented real-time volumetric segmentation framework [22],
[27]. The segmentation is represented as a state estimation
problem and solved with an extended Kalman filter with the
following processing chain.
1) The model is initialized in the image by aligning it with

manually identified landmarks.
2) Iteratively for each consecutive frame in the cardiac cycle,

starting at ED,
a) The next state is predicted according to the motion

model.
b) Edges are detected normal to the predicted surface

location.
c) The prediction and edge detections are fused to form

an updated state estimate.
d) The shape parameters are normalized to a plausible

shape.
3) The previous iteration is repeated, iterating backwards in

time.
4) Forwards and backwards iterations are fused, resulting in

the final segmentation.
Following an approach previously applied to segmentation of

the aortic root [28], we perform the whole processing cycle in
two passes. First, the segmentation is performed using a learned
prediction step and a restricted model allowing no local defor-
mations, which results in a rough segmentation and tracking of
the RV during the cardiac cycle. This result is then used as the
motion model for the second pass, in which local model defor-
mations are allowed, resulting in the final segmentation.
1) Initialization: The segmentation is initialized by manu-

ally identifying three landmarks in both ED and ES; RV apex,
Pulmonary Valve (PV) center, and Tricuspid Valve (TV) center.
Based on the landmarks in the image

space, an initial alignment state for the hinge and global
transforms is calculated by aligning with the corresponding
landmarks in the model space.
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2) Prediction: The time domain dynamics of the model is
controlled in the Kalman filter prediction step, similar to pre-
vious works [28].We use a combination of the previous estimate

and a regularization state to predict
the next estimate by

(12)
(13)

where is a diagonal matrix specifying the regularization
strength for each state and is the estimated prediction
noise. The diagonal elements of were chosen separately for
translation, scaling, rotation and deformation states.
In the first pass, is calculated using the initialization

method described in Section II-B-1 using the motion model
landmark points described in Section II-A-5. In the second pass,

is the result of the first segmentation pass.
3) Edge Detection: In order to drive the surface towards the

image borders, edge detection is performed normal to the pre-
dicted surface at 650 evenly distributed points. Each local edge
point with associated unit normal is transformed to the
global space , , and the corresponding Jacobian matrix
is calculated by

(14)

(15)

(16)

where and

(17)

(18)

(19)

due to the chain rule.
Edge displacements are detected by searching along

around using the least mean squares fit to an intensity step
function. We use 40 samples with 1 mm spacing for each edge
profile, resulting in a capture range of 4 cm. Outlier edges are
rejected based on the intensity step height and differences be-
tween neighboring edges.
The edge points are grouped into 5 regions; Septum, poste-

rior LV-RV attachment, posterolateral free wall, anterolateral
free wall including the outflow tract and anterior LV-RV attach-
ment, and base, as shown in Fig. 3. Each group has different a
priori uncertainties of the edge measurements, used to express
the common appearance of RV 3DTTE images. The uncertain-
ties are highest for the anterolateral free wall and lowest for the
septum and posterolateral free wall.
For each region , each measured edge displacement has

an associated measurement noise with estimated variance .
It is generally hard to properly estimate the variance of each

Fig. 3. Model regions as seen from medial (left) and lateral (right) sides;
septum (green), posterior LV-RV attachment (yellow), posterolateral free wall
(cyan), anterolateral free wall (magenta), and base (blue).

Fig. 4. Example of manual segmentation in MRI short axis view.

edge profile in the ultrasound image. To simplify, we calculate
the quality-of-fit for each edge profile as the sum of squared
deviations in the intensity fit. The variances are then normalized
by

(20)

such that the amount of measurement influence
is consistent across datasets, where is the a priori variance
of the edge detection of the 'th region.
4) State Update: The update step in the Kalman filter fuses

the previous estimate, state prediction, and detected edges. In
order to speed up the calculations, the Kalman gain is simplified
by assuming independent measurement noises [22]. With this
simplification, the update step can be written as

(21)
(22)

(23)

where and are the updated state and covariance ma-
trix, and , , and are the edge displacement, edge noise
variance, normal vector, and surface Jacobian matrix respec-
tively.
This computation is efficient as it does not require inversion

of matrices with size dependent on the number of measure-
ments.
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5) Normalization: The deformation states were modeled
as a multi-variate gaussian distribution,

(24)

To constrain the allowed deformation to plausable shapes, the
deformation states for which are projected
onto the hyperellipsoid where is the 95%
threshold of the distribution according to normal SSM prac-
tice [29].
6) Kalman Smoother: In order to prevent the segmenta-

tion from lagging behind the image borders and to regularize
towards a cyclic volume curve, we apply Kalman smoothing
by tracking forwards and backwards in time as previously
described [28].
The Kalman filter is iterated forward over frames

to produce estimate with estimated co-
variance . Backwards iteration over frames ,

produces and . The forward and backward
state estimates are then assimilated by

(25)

(26)

C. Validation
1) Model: To ensure that the subdivision surface was able to

represent the RV geometry with the limited degrees of freedom
introduced in Section II-A-1, the mean and maximum (Haus-
dorff) euclidean distances between all points on the manual en-
docardial contour and corresponding points on the fitted surface
were calculated.
To further ensure that the subspace consisting of the selected

modes of variation was suitable to represent the observed
range of anatomies, a leave-one-patient-out statistical shape
model reconstruction validation was performed. For each
patient, the mean model parameters and modes of variation
were constructed for the remaining 13 patients as described

in Section II-A-3, selecting the modes constituting at least
95% of the variation. For each surface of the unseen patient,
the reconstructed surface was calculated using parameters

(27)

where and are the parameters of
the unseen surface. The mean signed and unsigned euclidean
distances between points on the unseen MRI traces and recon-
structed surfaces were calculated, as well as the Hausdorff dis-
tances.
2) Segmentation: The segmentation was validated retro-

spectively on 3DTTE recordings of 17 patients with aortic
insufficiency. The patient characteristics are given in Table I.
Segmentation quality was evaluated by comparing End Di-
astolic Volume (EDV), End Systolic Volume (ESV), Stroke
Volume (SV) and Ejection Fraction (EF) between the pro-
posed method and manual measurements in MRI, as well as

TABLE I
PATIENT CHARACTERISTICS OF THE 17 CLINICAL

CASES USED FOR VALIDATION

a state-of-the-art commercial segmentation tool for 3DTTE
(TomTec 4D RV-Function, version 2.0, TomTec Imaging Sys-
tems, Munich, Germany) with and without manual contour
correction.
In addition, the following surface-surface distance metrics

between the automated and manual 3DTTE segmentations were
calculated: mean and median absolute distance, mean and me-
dian signed distance, and Hausdorff distance.

a) 3DTTE acquisition: 3DTTE recordings of the RV were
acquired from an apical position. The probe was tilted slightly
in order to get as much as possible of the RV into the sector.
The images were recorded using ECG-gated multi-beat acqui-
sitions under breath hold. All images were acquired on a Vivid
E9 scanner using a 4 V probe (GE Vingmed Ultrasound AS,
Horten, Norway). The mean temporal resolution and sector size
were 28 ms and respectively. 15 recordings were ac-
quired from 6 beats, and 2 recordings from 4 beats.

b) 3DTTE automated segmentation: The RV apex, pul-
monary valve, and tricuspid valve were manually identified in
ES and ED using a dedicated software. The proposed automated
segmentation method was then run on the image without any
further manual involvement.

c) 3DTTE reference segmentation: The TomTec 4D
RV-Function software was used as a reference for RV assess-
ment in 3DTTE. For each image, the analysis starts by manually
identifying the following 10 landmarks in a dedicated software;
mitral and tricuspid valve center, LV and RV apex, anterior
and posterior RV-LV attachment points as well as medial and
lateral RV endocardial border points in a single short axis slice,
and two points spanning the aortic valve annulus. The software
then automatically tracks the endocardial borders during the
cardiac cycle and generates corresponding volume loops. After
tracking, all contours can be manually adjusted. This software
was run twice for each image, by an experienced cardiologist.
Firstly, extensive manual contour corrections were performed
to provide a ground-truth manual 3DTTE reference. Secondly,
the tool was run without any manual interaction after initial-
ization, in order to provide a comparable algorithmic reference
for the proposed method.

d) MRI acquisition: Magnetic resonance images were
acquired with Siemens 1.5 tesla scanners (Siemens Avanto
and Siemens Sonata; Siemens Medical Systems, Erlangen,
Germany), using a breath-hold, prospectively ECG-triggered,
segmented, balanced steady-state free precession gradient-echo
cine sequence with minimum echo and repetition times. Slices
were 6 mm thick with a 4 mm short-axis interslice gap, a spatial
resolution of 1.9 1.3 mm, and a temporal resolution of 30–35
ms. Endocardial borders were traced manually at a PACS work
station (Sectra Medical Systems AB, Linköping, Sweden).
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Fig. 5. The most dominant modes of variation of the statistical shape model.

Right and left ventricular volumes and ejection fractions were
calculated by short axis slice summation.
3) Statistical Analysis: Statistical analysis was performed

using MedCalc, version 15.2 (MedCalc Software, Ostend,
Belgium). Correlation between measurements were assessed by
the Intra-class Correlation Coefficient (ICC) using a two-way
model with absolute agreement. Continuous variables are
presented as mean SD.

III. RESULTS
A. Model
For the 280 fitted MRI segmentations, the mean distance be-

tween the manual trace and fitted model was 1.8 0.37 mm
with a mean signed distance of 0.30 0.12 mm and Hausdorff
distance 7.6 2.3 mm.
12 deformation modes were necessary to cover at least 95%

of the observed variation. The first modes of variation contained
the expansion, elongation, and curvature around the LV, shown
in Fig. 5. The leave-one-patient-out reconstruction resulted in a
surface-surface mean absolute distance error of 2.1 0.4 mm,
signed distance error 0.4 0.4 mm, and Hausdorff distance 8.7
3.0 mm.

B. Segmentation
All recordings were successfully segmented with computa-

tion time 2.0 0.33 s (53 4.1 ms per frame) on a stan-
dard laptop. The mean signed and unsigned surface-surface dis-
tances between the automated and 3DTTE reference segmen-
tations were 0.5 1.4 mm and 3.6 0.7 mm respectively.
The corresponding median surface-surface distances were 0.2

0.7 mm and 3.0 0.6 mm, and the Hausdorff distances were
11.6 2.0 mm. A comparison of volumes and ejection frac-
tions for all methods is reported in Table II. Figs. 6 and 7 show
a Bland-Altman analysis, and clustering and agreement between
the methods respectively. Example segmentations are shown in
Figs. 4 and 8.

IV. DISCUSSION

Fitting the proposed subdivision surface to manual segmen-
tations in MRI images for statistical shape analysis resulted in
an acceptable residual distance between the fitted surface and
manual trace, and an associated mean signed distance close to
zero. Although this error could be reduced by increasing the
number of control vertices of the RV model, this would come
at the cost of reduced segmentation robustness. We conclude
that the surface was a sufficiently accurate representation of the
observed RV geometries, and the compact representation did
not significantly restrict the expressivity of the surface. Further-
more, the statistical shape model using only 12 modes of vari-
ation was able to accurately represent the observed geometrical
distribution in a leave-one-patient-out experiment.
The method achieved a Mean Absolute Distance (MAD)

error of 3.6 mm and Hausdorff Distance (HD) of 11.6 mm. It is
natural to compare this to to LV segmentation methods, where
MAD and HD errors of about 2.3 mm and 8.5 mm have been
reported for current state-of-the-art methods [33], including
state-estimation approaches similar to the proposed method
[34]. The noticeably higher surface errors illustrate how chal-
lenging the RV segmentation problem is in comparison to the
LV, because of the increased shape complexity and reduced



48 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 1, JANUARY 2016

TABLE II
COMPARISON BETWEEN MANUAL MEASUREMENTS IN MRI, REFERENCE METHOD IN 3DTTE WITH AND WITHOUT MANUAL

CONTOUR CORRECTION, AND THE PROPOSED METHOD FOR EDV, ESV, SV AND EF. (a) End Diastolic Volume (mL);
(b) End Systolic Volume (mL); (c) Stroke Volume (mL); (d) Ejection Fraction (%)

Values are mean SD (ICC). by two-tailed Student's -test. Negative values indicate an underestimation of the row relative to the column.

Fig. 6. End diastolic and end systolic volumes quantified by the proposed automated method in 3DTTE compared to MRI and 3DTTE reference (manual). (a)
End diastolic volume; (b) end systolic volume.

image quality. The majority of the surface error was observed
in the RVOT region. This is where the image quality is poorest,
and both the automated and manual segmentations are most
uncertain. Additionally, the tool used to generate the reference
segmentations has limited flexibility in editing the RVOT.
The observed HD of 11.6 mm is comparable to what was

recently reported from the MICCAI'12 MRI RV segmentation
challenge, where the lowest HDwas 7.3 mm and 9.3 mm for two
separate data sets [3]. Recently, Stebbing et al. [15] presented a
RV segmentation method that, instead of using statistical shape
information directly, performs segmentation simultaneously in
either multiple images from different views of the same patient,
or in images of multiple patients. The method achieved median

signed trace-surface distances of about 1.5 mm (median over
4 cases) for multiple images of a single patient and 1.7 mm
(median over 12 cases) for multiple patients. These error metrics
are significantly lower than what was shown in our validation
(3.0 mm mean). However, the metrics were based on traces in
three short axis and two long axis slices which did not cover
the RVOT. They are therefore not directly comparable to the
surface-surface distances reported in our validation. Finally, our
proposed method was significantly faster, requiring on average
2 s per patient compared to about 60 minutes for simultaneous
segmentation of 12 patients.
The model contains a hinge transform used to capture dif-

ferences in the RVOT orientation. This transform was not con-
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Fig. 7. Dendrograms from agglomerative hierarchical clustering using average linkage [32] of Intra-class Correlation Coefficients (ICC) between manual mea-
surements in MRI, reference method in 3DTTE with and without manual contour correction, and the proposed method. (a) EDV (mL); (b) ESV (mL); (c) SV
(mL); (d) EF (%).

Fig. 8. Example of segmentation by the proposed method (green) compared to the manual reference (magenta). Left: Segmented meshes for a single case. Right:
short axis (top) and long axis (bottom) planes for three different cases.

sidered when building the statistical shape model, as PCA ap-
plied in euclidean space is generally not suited to capture rota-
tional movement. This means that the model will lack deforma-
tion modes relating the RVOT orientation with RV shape. How-
ever, the hinge introduces the necessary degrees of freedom to
place the pulmonary valve alignment landmark in a natural way,
without any surface deformations. This is both desirable for the
user, and results in a good initialization which is important for
the Kalman filter driven segmentation.
We observed an underestimation with respect to MRI of the

EDV, ESV and SV of both the manual 3DTTE reference and the
proposed method, while the EF was unbiased for the proposed
method and overestimated for the manual reference. This trend
is consistent with results reported in the literature for manual
and semi-automatic measurements, except for the manual EF
which is typically slightly underestimated [21], [35]. Because
of the large differences in methodology between TTE and MRI,
perfect correlation should not be expected [17]. For instance,
the RV volume in the proposed 3DTTE segmentation method is

strictly bounded by the tricuspid and pulmonary valve planes.
In contrast, using disk summation in MRI short axis slices, the
volume is bounded by a slice approximately in the atrioven-
tricular plane. Compared to TomTec 4D RV-Function without
manual contour correction, the proposed method resulted in
higher intra-class correlation coefficients and smaller biases
compared to both MRI and 3DTTE reference for all quantifica-
tion variables, EDV, ESV, SV and EF. In addition, the proposed
method requires less manual user interaction; identification
of 3 landmarks in two phases compared to 10 landmarks in a
single phase.
Segmentation in ultrasound images is generally challenging,

because of the low spatial resolution and the presence of arti-
facts such as dropouts, speckles and reverberations. For the RV
in particular, the pulmonary valve, RVOT and anterolateral free
wall is often acoustically shadowed by the sternum and lungs
[21]. Furthermore, irregular trabeculations are typically very
pronounced in the apical region of the RV [3]. Robustness of
the segmentation method is therefore essential for solving this
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problem. The proposed RV surface model has a compact repre-
sentation and inherently enforces regularization. By combining
this with a statistical shape model we are mitigating problems
related to edges disappearing due to acoustic shadowing or out
of sector motion, by assuming in this region a statistically plau-
sible shape, influenced by the general shape of the ventricle. The
simple line search edge detectors are robust to noise in the ul-
trasound image, and because we combine several of them, we
limit the impact of individual errors on the final segmentation.
Similarly, using a strong prior geometry and motion model in
the Kalman filter ensures a robust segmentation.
An echocardiography procedure is interactive in nature, and

a computationally efficient method is therefore vital for wide-
spread usage in clinical practice. The Kalman filter approach is
very computationally efficient, with a mean computation time
of 2.0 s. Further improvements could be made as the method
lends itself to GPU parallelization.
In a clinical setting, it is important that the user is able to

adjust the segmentation. The proposed framework naturally ex-
tends to user input, as manually annotated points and traces can
be introduced as measurements (23). If these measurements are
modeled with a low variance, the surface will interpolate the an-
notations and affect the segmentation during the whole cardiac
cycle.
The effectiveness of the statistical shape model approach is

dependent on the quality and quantity of the training data. In this
study, we used a limited training set of only 14 patients. This can
be justified by the fact that the training set contained patients
with a variety of diseases. However, the method remains to be
proven on different patient populations with diseases relevant
to the RV.
A fundamental limitation to the statistical shape method is the

inability of the surface model to adequately represent anatomies
very different from what was observed in the training set. For
some diseases, this problem can be mitigated by increasing the
training set without any further changes in methodology. How-
ever, in some variations of structural congenital heart disease,
such as double outlet right ventricle, the method proposed here
is not directly suited, unless the disease is known prior to seg-
mentation and a separate model and training set specific to the
disease is used.

V. CONCLUSION
In this study an automated method for segmenting the right

ventricle in 3D echocardiography has been described and val-
idated against MRI and manual echocardiographic segmenta-
tion. The method is robust and computationally efficient, and
resulted in good correlation with both MRI and manual 3DTTE
reference in 17 clinical cases.
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